Aggregation and sedimentation of magnetite nanoparticle clusters †

نویسندگان

  • P. J. Vikesland
  • R. L. Rebodos
  • J. Y. Bottero
چکیده

Magnetite nanoparticles are redox active constituents of subsurface and corrosive environments. In this study, we characterized the aggregation and sedimentation behavior of well characterized magnetite nanoparticle clusters using dynamic light scattering (DLS), UV-vis-NIR spectroscopy, and small angle X-ray scattering (SAXS). Both unfunctionalized (NaOH-magnetite) and tetramethylammonium hydroxide (TMAOH-magnetite) surface functionalized nanoparticle clusters were employed. TMAOH-magnetite has a slightly smaller primary nanoparticle radius as determined by TEM (4 ± 0.7 nm vs. 5 ± 0.8 for NaOH-magnetite) and a smaller initial DLS determined cluster radius (<30 nm vs. 100–200 nm for NaOH-magnetite). Interestingly, in spite of its smaller initial nanoparticle cluster size, TMAOH-magnetite undergoes sedimentation more rapidly than NaOH-magnetite. This behavior is consistent with the more rapid aggregation of the smaller TMAOH-magnetite clusters as well as their lower fractal dimension, as determined by SAXS. This study illustrates that both nanoparticle cluster size and fractal dimension should be carefully considered when considering the environmental transport and fate of highly aggregated nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluidsw

We report the physico-chemical characterisation of fatty acid stabilised aqueous magnetic fluids, which are ideal systems for studying the influence of nanoparticle aggregation on the emergent magnetic resonance properties of the suspensions. Stable colloids of superparamagnetic magnetite, Fe3O4, nanoparticle clusters in the 80 to 100 nm size range were produced by in situ nanoparticle growth a...

متن کامل

Influence of structure of iron nanoparticles in aggregates on their magnetic properties

Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nan...

متن کامل

Controlling Nanoparticle Aggregation in Colloidal Microwave Absorbers via Interface Chemistry

Interface chemistry can be implemented to modulate the aggregation and dispersion of nanoparticles in a colloidal solution. In this experimental study, we demonstrate the controlled aggregation of superparamagnetic magnetite nanoparticles in organic and aqueous solutions. With decrease in solution pH, individual nanoparticles (12-14 nm) reproducibly cluster to form ~52 nm monodisperse aggregate...

متن کامل

Two and Three Dimensional Monte Carlo Simulation of Magnetite Nanoparticle Based Ferrofluids

We have simulated a magnetite nanoparticle based ferrofluid using Monte Carlo method. Two and three dimensional Monte Carlo simulations have been done using parallel computing technique. The aggregation and rearrangement of nanoparticles embedded in a liquid carrier have been studied in various particle volume fractions. Our simulation results are in complete agreement with the reported experim...

متن کامل

Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.

Nanoscale zerovalent iron (NZVI) rapidly transforms many environmental contaminants to benign products and is a promising in-situ remediation agent. To be effective, NZVI should form stable dispersions in water such that it can be delivered in water-saturated porous media to the contaminated area. Limited mobility of NZVI has been reported, however, attributed to its rapid aggregation. This stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016